外汇EA策略为什么会过度拟合

在建立外汇EA策略量化交易模型的过程中,很多交易员都会经历过度拟合的情况。过度拟合其实是机器学习领域和统计学领域的一个概念。一般被用作表示一个模型在测试时表现的非常好,但是在实践过程却成绩却不如预期。

外汇EA策略周报表 qq:1580006136

对于传统的外汇技术分析指标公式学习来说过度拟合的影响不是很明显,但金融数据时间序列特征和数据的高噪音特性则决定了过度拟合会带来的巨大影响。所以,我们在进行外汇AI机器人策略建模时一定要严谨避免过度拟合的情况发生。

外汇EA策略程序化交易系统的设计过程包括两个部分,这两个部分都有可能造成过度拟合。

交易系统设计的第一部分是形成一个完整的交易规则体系。形成交易规则一般有自上而下和自下而上两种方法:
自上而下的方法是基于对外汇市场行情的长期观察总结出来规律,再在规律的基础之上形成数量化的交易策略,这一过程需要长时间交易经验的积累;
自下而上的方法是从市场数据出发,进行统计分析得出市场特征而形成的交易策略。

交易者在将外汇EA策略交易系统用历史数据进行回测时,往往会根据测试结果对交易规则进行重新训练形成新的交易规则,或者对这些规则进行组合,这样产生的交易系统很容易是对市场数据的拟合。

同时在外汇量化实现交易系统的过程中,一般会采用参数来描述系统。设计者会通过增加参数个数和优化这些参数,寻找出最佳的外汇EA策略交易系统。

如果参数个数较多或过度优化参数,往往就会产生对历史行情的完美过度拟合,而未来的绩效却大打折扣。

发表评论

邮箱地址不会被公开。 必填项已用*标注